56 research outputs found

    Introduction to discrete functional analysis techniques for the numerical study of diffusion equations with irregular data

    Get PDF
    We give an introduction to discrete functional analysis techniques for stationary and transient diffusion equations. We show how these techniques are used to establish the convergence of various numerical schemes without assuming non-physical regularity on the data. For simplicity of exposure, we mostly consider linear elliptic equations, and we briefly explain how these techniques can be adapted and extended to non-linear time-dependent meaningful models (Navier--Stokes equations, flows in porous media, etc.). These convergence techniques rely on discrete Sobolev norms and the translation to the discrete setting of functional analysis results

    Finite volume schemes for diffusion equations: introduction to and review of modern methods

    Full text link
    We present Finite Volume methods for diffusion equations on generic meshes, that received important coverage in the last decade or so. After introducing the main ideas and construction principles of the methods, we review some literature results, focusing on two important properties of schemes (discrete versions of well-known properties of the continuous equation): coercivity and minimum-maximum principles. Coercivity ensures the stability of the method as well as its convergence under assumptions compatible with real-world applications, whereas minimum-maximum principles are crucial in case of strong anisotropy to obtain physically meaningful approximate solutions

    Ws,pW^{s,p}-approximation properties of elliptic projectors on polynomial spaces, with application to the error analysis of a Hybrid High-Order discretisation of Leray-Lions problems

    Full text link
    In this work we prove optimal Ws,pW^{s,p}-approximation estimates (with p∈[1,+∞]p\in[1,+\infty]) for elliptic projectors on local polynomial spaces. The proof hinges on the classical Dupont--Scott approximation theory together with two novel abstract lemmas: An approximation result for bounded projectors, and an LpL^p-boundedness result for L2L^2-orthogonal projectors on polynomial subspaces. The Ws,pW^{s,p}-approximation results have general applicability to (standard or polytopal) numerical methods based on local polynomial spaces. As an illustration, we use these Ws,pW^{s,p}-estimates to derive novel error estimates for a Hybrid High-Order discretization of Leray--Lions elliptic problems whose weak formulation is classically set in W1,p(Ω)W^{1,p}(\Omega) for some p∈(1,+∞)p\in(1,+\infty). This kind of problems appears, e.g., in the modelling of glacier motion, of incompressible turbulent flows, and in airfoil design. Denoting by hh the meshsize, we prove that the approximation error measured in a W1,pW^{1,p}-like discrete norm scales as hk+1p−1h^{\frac{k+1}{p-1}} when p≥2p\ge 2 and as h(k+1)(p−1)h^{(k+1)(p-1)} when p<2p<2.Comment: keywords: Ws,pW^{s,p}-approximation properties of elliptic projector on polynomials, Hybrid High-Order methods, nonlinear elliptic equations, pp-Laplacian, error estimate

    Gradient Schemes for Linear and Non-linear Elasticity Equations

    Full text link
    The Gradient Scheme framework provides a unified analysis setting for many different families of numerical methods for diffusion equations. We show in this paper that the Gradient Scheme framework can be adapted to elasticity equations, and provides error estimates for linear elasticity and convergence results for non-linear elasticity. We also establish that several classical and modern numerical methods for elasticity are embedded in the Gradient Scheme framework, which allows us to obtain convergence results for these methods in cases where the solution does not satisfy the full H2H^2-regularity or for non-linear models

    An HMM--ELLAM scheme on generic polygonal meshes for miscible incompressible flows in porous media

    Full text link
    We design a numerical approximation of a system of partial differential equations modelling the miscible displacement of a fluid by another in a porous medium. The advective part of the system is discretised using a characteristic method, and the diffusive parts by a finite volume method. The scheme is applicable on generic (possibly non-conforming) meshes as encountered in applications. The main features of our work are the reconstruction of a Darcy velocity, from the discrete pressure fluxes, that enjoys a local consistency property, an analysis of implementation issues faced when tracking, via the characteristic method, distorted cells, and a new treatment of cells near the injection well that accounts better for the conservativity of the injected fluid
    • …
    corecore